首页 | 本学科首页   官方微博 | 高级检索  
     


Sphere‐to‐Multipod Transmorphic Change of Nanoconfined Pt Electrocatalyst during Oxygen Reduction Reaction
Authors:Juchan Yang  Dongwoo Kang  Yuju Jeon  Jong Hoon Lee  Hu Young Jeong  Hyeon Suk Shin  Hyun‐Kon Song
Abstract:An oxygen reduction reaction (ORR) catalyst/support system is designed to have Pt nanoparticles nanoconfined in a nanodimensionally limited space. Holey crumpled reduced graphene oxide plates (hCR‐rGO) are used as a carbon support for Pt loading. As expected from interparticular Pt‐to‐Pt distance of Pt‐loaded hCR‐rGO longer than that of Pt/C (Pt‐loaded carbon black as a practical Pt catalyst), the durability of ORR electroactivity along cycles is improved by replacing the widely used carbon black with hCR‐rGO. Unexpected morphological changes of Pt are electrochemically induced during repeated ORR processes. Spherical multifaceted Pt particles are evolved to {110}‐dominant dendritic multipods. Nanoconfinement of a limited number of Pt within a nanodimensionally limited space is responsible for the morphological changes. The improved durability observed from Pt‐loaded hCR‐rGO originates from 1) dendritic pod structure of Pt exposing more active sites to reactants and 2) highly ORR‐active Pt {110} planes dominant on the surface.
Keywords:confinement  electrocatalyst  holey graphene  oxygen reduction  stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号