首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots
Authors:Hongling Yu  Heyong Wang  Jiangbin Zhang  Jun Lu  Zhongcheng Yuan  Weidong Xu  Lars Hultman  Artem A Bakulin  Richard H Friend  Jianpu Wang  Xiao‐Ke Liu  Feng Gao
Abstract:Semiconductor quantum dots (QDs) are among the most promising next‐generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution‐processed high‐performance optoelectronic devices such as light‐emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one‐step spin‐coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size‐dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow‐bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state‐of‐the‐art LED systems and other optoelectronic devices.
Keywords:energy transfer  light‐emitting diodes  organic–  inorganic hybrid perovskites  tunable emission
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号