首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of hydroxyapatite‐titanium‐MWCNTs composite coating fabricated by electrophoretic deposition on corrosion and cellular behavior of NiTi alloy
Authors:Hossein Maleki‐Ghaleh  Jafar Khalil‐Allafi
Abstract:In this study, the hydroxyapatite (HA)‐titanium (Ti, 20 wt.%) multiwalled carbon nanotubes (MWCNTs, 1 wt.%) composite coating was applied on the NiTi alloy by using the electrophoretic deposition (EPD) technique. The morphologies and the phase structures of the coatings were investigated by the FESEM and XRD analysis, respectively. The corrosion behaviors of the coated NiTi samples were investigated using the polarization and electrochemical impedance spectroscopy tests in a simulated body fluid (SBF). The amounts of the released Ni ions from the coated NiTi were studied in the SBF. The results of the electrochemical tests revealed the corrosion resistance of the NiTi coated with HA was further improved by the addition of the Ti and MWCNTs to the HA coating. The current density and corrosion resistance of the NiTi alloy changed from 2.52 μA.cm?2 and 24.13 kΩ to 0.91 nA.cm?2 and 5.92 MΩ after coated with the HA‐Ti‐MWCNTs composite coating. Also, the number of nickel ions released from the surface of the NiTi alloy to the SBF medium suppressed from 11.8 to 0.08 μgr.L?1, after coating with HA‐Ti‐MWCNTs. Also, the cellular proliferation in the culture medium consisting of the NiTi alloy coated with the HA‐Ti‐MWCNTs improved significantly (compared with that of the NiTi alloy) as shown no toxicity in the cell culture medium.
Keywords:cellular behavior  corrosion behavior  HA‐Ti‐MWCNTs composite coating  Ni ions release  NiTi shape memory alloy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号