首页 | 本学科首页   官方微博 | 高级检索  
     

Global Optimization Approach to Non-convex Problems
引用本文:LU Zi-fang,ZHENG Hui-li Nanjing University of Posts and Telecommunications,Nanjing 200031,P.R. China. Global Optimization Approach to Non-convex Problems[J]. 中国邮电高校学报(英文版), 2004, 11(3)
作者姓名:LU Zi-fang  ZHENG Hui-li Nanjing University of Posts and Telecommunications  Nanjing 200031  P.R. China
作者单位:LU Zi-fang,ZHENG Hui-li Nanjing University of Posts and Telecommunications,Nanjing 200031,P.R. China
摘    要:1 Introduction Thispaperismainlyconcernedwiththefollowingop timizationproblem :min J(X) (1)SubjecttoX =(x1,x2 ,… ,xn)′∈Ω Rn (2 ) HereXisadecision makingvector ;theprimede notestranspositionofthevectorX ;ΩrepresentsthefeasibledomainandisaBanachspace ;Rnisthen di mensionalEuclideanspace ;J(X)representsaLipschitzdifferentialnon convexfunction .WewanttofindtheglobalminimumofJ(X) . Theformulatedproblemisoftenobservedandstudiedintherealworld .Themethodsoralgorithmsforsolvingthenon …


Global Optimization Approach to Non-convex Problems
LU Zi-fang,ZHENG Hui-li. Global Optimization Approach to Non-convex Problems[J]. The Journal of China Universities of Posts and Telecommunications, 2004, 11(3)
Authors:LU Zi-fang  ZHENG Hui-li
Abstract:A new approach to find the global optimal solution of the special non-convex problems is proposed in this paper. The non-convex objective problem is first decomposed into two convex sub-problems. Then a generalized gradient is introduced to determine a search direction and the evolution equation is built to obtain a global minimum point. By the approach, we can prevent the search process from some local minima and search a global minimum point. Two numerical examples are given to prove the approach to be effective.
Keywords:global optimization  non-convex function  generalized gradient  evolution equation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号