首页 | 本学科首页   官方微博 | 高级检索  
     

分工合作的加权蚁群算法*
引用本文:刘文远,袁芳,孙德杰. 分工合作的加权蚁群算法*[J]. 计算机应用研究, 2010, 27(4): 1239-1241. DOI: 10.3969/j.issn.1001-3695.2010.04.009
作者姓名:刘文远  袁芳  孙德杰
作者单位:燕山大学,信息科学与工程学院,河北,秦皇岛,066004
基金项目:国家火炬计划资助项目(国科发计[2008GH540088])
摘    要:针对蚁群算法搜索时间长、易于陷入局部最优解的缺点,提出一种新的改进算法——分工合作的加权蚁群算法。此算法采取分工合作的方式,在信息素初始化、状态转移概率中分别加入权值,并运用遗传算法中排序的概念对信息素更新机制进行排序加权,此外对信息素上限加以限制。最后以TSP为例,验证了此改进算法不但在收敛速度上有了大幅度提高,而且有效避免了易于陷入局部最优解的缺点,从而证明了提出的新算法是合理有效的。

关 键 词:蚁群算法; 分工合作; 加权; 排序加权; 旅行商问题

Ant colony algorithm with division-cooperation of labor and weight
LIU Wen-yuan,YUAN Fang,SUN De-jie. Ant colony algorithm with division-cooperation of labor and weight[J]. Application Research of Computers, 2010, 27(4): 1239-1241. DOI: 10.3969/j.issn.1001-3695.2010.04.009
Authors:LIU Wen-yuan  YUAN Fang  SUN De-jie
Affiliation:School of Information Engineering/a>;Yanshan University/a>;Qinhuangdao Hebei 066004/a>;China
Abstract:For ant colony algorithm had a long searching time and was easy to fall in local optimal, this paper proposed a new kind of improvement algorithm: ant colony algorithm with division-cooperation of labor and weight. This new algorithm adopted a mode of division-cooperation of labor, and added weights in the initialization of pheromone and the rate of state transfer respectively. At the same time, it made sort-weight to the update of pheromone with the concept of sort in the genetic algorithm. Furthermore, limited the maximal pheromone. At last, used TSP to testify the validity of the new algorithm. The result proves the improved algorithm enhances the convergence largely and effectively avoid getting into local optimal easily.
Keywords:ant colony algorithm   division-cooperation of labor   weight   sort-weight   TSP
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号