首页 | 本学科首页   官方微博 | 高级检索  
     

多源遥感数据小麦识别及长势监测比较研究
引用本文:尹捷,周雷雷,李利伟,张雅琼,黄文江,张赫林,王岩,郑诗军,范海生,纪婵,陈俊杰,彭代亮. 多源遥感数据小麦识别及长势监测比较研究[J]. 遥感技术与应用, 2021, 36(2): 332-341. DOI: 10.11873/j.issn.1004-0323.2021.2.0332
作者姓名:尹捷  周雷雷  李利伟  张雅琼  黄文江  张赫林  王岩  郑诗军  范海生  纪婵  陈俊杰  彭代亮
作者单位:1.河南理工大学测绘与国土信息工程学院,河南 焦作 454003;2.中国科学院空天信息创新研究院数字地球科学重点实验室,北京 100094;3.生态环境部卫星环境应用中心,北京 100094;4.北京市陆表遥感数据产品工程技术研究中心,北京师范大学地理科学学部,北京 100875;5.中国科学院大学,北京 100049;6.珠海欧比特宇航科技股份有限公司,广东 珠海 519000
基金项目:国家自然科学重点基金项目“基于深度学习的小麦植被参量高光谱遥感反演研究”(42030111);珠海一号卫星大数据云服务平台与应用示范(遥感大数据服务团队)(ZH0111?0405?170027?P?WC)
摘    要:小麦是我国主要的农作物之一,对于我国的经济发展有着重要意义.遥感技术经过不断发展,已成为提取小麦及长势研究的重要手段.利用高光谱珠海一号OHS-2A卫星、多光谱Sentinel-2A卫星以及MODIS等多源遥感数据,以雄安为研究区,采用支持向量机的方法进行小麦提取,结合野外实测数据利用混淆矩阵进行精度评价分析;分别对比...

关 键 词:珠海一号  长势监测  小麦识别  雄安
收稿时间:2020-07-24

A Comparative Study on Wheat Identification and Growth Monitoring based on Multi-source Remote Sensing Data
Jie Yin,Leilei Zhou,Liwei Li,Yaqiong Zhang,Wenjiang Huang,Helin Zhang,Yan Wang,Shijun Zheng,Haisheng Fan,Chan Ji,Junjie Chen,Dailiang Peng. A Comparative Study on Wheat Identification and Growth Monitoring based on Multi-source Remote Sensing Data[J]. Remote Sensing Technology and Application, 2021, 36(2): 332-341. DOI: 10.11873/j.issn.1004-0323.2021.2.0332
Authors:Jie Yin  Leilei Zhou  Liwei Li  Yaqiong Zhang  Wenjiang Huang  Helin Zhang  Yan Wang  Shijun Zheng  Haisheng Fan  Chan Ji  Junjie Chen  Dailiang Peng
Abstract:Wheat is one of the main crops in China, which is of great significance to the economic development of China.With the continuous development of remote sensing technology, remote sensing technology has become an important means to extract wheat and growth monitoring. The identification of wheat is the premise of its planting area management, and the growth research is an important indicator of its growth evaluation and yield control. In this paper, the multi-source remote sensing data such as the hyperspectral zhuhai No.1 OHS-2A satellite, the multi-spectral Sentinel-2A satellite and MODIS were used to extract wheat by using Support Vector Machine(SVM) in Xiong'an as the research area. The accuracy of wheat was evaluated and analyzed by using the confusion matrix based on the field measurement data. Comparing the two important growth stages of wheat: the return green period and the heading period, wheat growth was divided into three grades (good growth, similar growth, worse growth) for growth monitoring and comparing. The results showed that under the same environmental conditions, the Overall accuracy of OHS-2A was 82.08%, and the Kappa coefficient was 0.76;The Overall accuracy of Sentinel-2A was 85.57% ,and the Kappa coefficient was 0.81, By contrast, Sentinel-2A is the best at identification wheat. In the process of growth monitoring, the Sentinel-2A satellite is more effective than MODIS in monitoring and analyzing the growth of Xiong'an wheat by comparing the growth conditions and the relative amplitude of the change of wheat growth.This study analyzed the status of wheat identification and growth monitoring in Xiong'an from remote sensing data of different resolutions, which is conducive to wheat planting management and the formulation of agricultural policies, which is of great significance for promoting the economic development of green Xiong’an and the city.
Keywords:OHS-2A  Growth monitoring  Wheat identification  Xiong'an  
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号