首页 | 本学科首页   官方微博 | 高级检索  
     

基于多季相Sentinel-2影像的白洋淀湿地信息提取
引用本文:梁爽,宫兆宁,赵文吉,关鸿亮,梁亚囡,陆丽,赵雪. 基于多季相Sentinel-2影像的白洋淀湿地信息提取[J]. 遥感技术与应用, 2021, 36(4): 777-790. DOI: 10.11873/j.issn.1004-0323.2021.4.0777
作者姓名:梁爽  宫兆宁  赵文吉  关鸿亮  梁亚囡  陆丽  赵雪
作者单位:1.首都师范大学资源环境与旅游学院,北京 100048;2.三维信息获取与应用教育部重点实验室,北京 100048;3.资源环境与地理信息系统北京市重点实验室,北京 100048
基金项目:国家自然科学基金项目(41971381);北京市水务局重点项目(TAHP?2018?ZB?YY?490S)
摘    要:白洋淀湿地是华北平原上重要的浅水湖泊湿地,对雄安新区绿色发展具有重要的生态价值。对白洋淀高度异质化的景观格局进行分类,能够为白洋淀湿地资源的遥感监测提供指导意义。针对湿地季节变化的特点,对白洋淀每个季节选取一期具有代表性的Sentinel-2影像,采用分类与回归树(CART)、支持向量机(SVM)、随机森林(RF)3种常用的机器学习分类器对15种季相组合实验方案进行分类,分析不同季相遥感影像及其组合对白洋淀湿地信息提取的优劣。结果表明:相较于使用单一季相影像分类,多季相影像的组合能够显著提高分类精度,春&夏季相组合能够得到最优的分类效果,相对单季影像总体分类精度提高了10.9%~25.5%,Kappa系数提高了0.09~0.29;SVM分类器的分类表现较为稳定,能够得到最高的平均分类精度,CART分类器在处理高维特征的能力不如随机森林和SVM;不同特征类型对湿地信息提取的贡献度从高到底依次是红边光谱特征、传统光谱特征、缨帽变换特征、主成分分析特征、纹理特征。实验成果能为湿地信息的遥感识别提供依据。

关 键 词:白洋淀湿地  季相特征组合  红边波段  信息提取  Sentinel?2  
收稿时间:2020-11-02

Information Extraction of Baiyangdian Wetland based on Multi-season Sentinel-2 Images
Shuang Liang,Zhaoning Gong,Wenji Zhao,Hongliang Guan,Yanan Liang,Li Lu,Xue Zhao. Information Extraction of Baiyangdian Wetland based on Multi-season Sentinel-2 Images[J]. Remote Sensing Technology and Application, 2021, 36(4): 777-790. DOI: 10.11873/j.issn.1004-0323.2021.4.0777
Authors:Shuang Liang  Zhaoning Gong  Wenji Zhao  Hongliang Guan  Yanan Liang  Li Lu  Xue Zhao
Abstract:Baiyangdian is an important shallow lake wetland in the North China Plain, which has important ecological value for the green development of Xiong’an New Area. Wetland mapping of the highly heterogeneous landscape pattern of Baiyangdian can provide guidance for the remote sensing monitoring of Baiyangdian Lake wetland resources. In view of the seasonal changes of wetlands, a representative Sentinel-2 image is selected for each season of Baiyangdian in 2019. Three commonly used machine learning classifiers, including Classification and Regression Tree (CART), Support Vector Machine (SVM) and Random Forest (RF), were used to classify 15 classification scenario. The advantages and disadvantages of different seasonal remote sensing images and their combinations for extracting Baiyangdian wetland information were analyzed. The results showed that the combination of multi-seasonal images can significantly improve the classification accuracy. The combination of spring and summer images obtained the optimal classification accuracy. Compared with the single seasonal images, the overall accuracy was improved by 10.9%~25.5% and the kappa coefficient was improved by 0.09~0.29. The classification performance of the SVM classifier was relatively stable, and the highest classification accuracy can be obtained. The ability of CART classifier in processing high-dimensional features was not as good as that of random forest and SVM. The contribution of different features to the wetland information extraction was described as follows: red-edge spectral feature > traditional spectral feature > tasselled cap transformation feature > principal component analysis feature > texture feature. The research results can provide a basis for the remote sensing mapping of Baiyangdian wetland.
Keywords:Baiyangdian wetland  Seasonal features combination  Red-edge band  Information extraction  Sentinel-2  
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号