首页 | 本学科首页   官方微博 | 高级检索  
     


Tumor-induced suppression of T lymphocyte proliferation coincides with inhibition of Jak3 expression and IL-2 receptor signaling: role of soluble products from human renal cell carcinomas
Authors:V Kolenko  Q Wang  MC Riedy  J O'Shea  J Ritz  MK Cathcart  P Rayman  R Tubbs  M Edinger  A Novick  R Bukowski  J Finke
Affiliation:Department of Immunology, Cleveland Clinic Foundation, OH 44195, USA.
Abstract:The proliferative capacity of T cells infiltrating human tumors is known to be impaired, possibly through their interaction with tumor. Here we demonstrate that soluble products derived from renal cell carcinoma (RCC-S) explants but not normal kidney can inhibit an IL-2-dependent signaling pathway that is critical to T cell proliferation. A major target of the immunosuppression was the IL-2R-associated protein tyrosine kinase, Janus kinase 3 (Jak3). RCC-S suppressed basal expression of Jak3 and its increase following stimulation with anti-CD3/IL-2. Jak3 was most sensitive to suppression by RCC-S; however, reduction in expression of p56(lck), p59(fyn), and ZAP-70 was observed in some experiments. Expression of other signaling elements linked to the IL-2R (Jak1) and the TCR (TCR-zeta, CD3-epsilon, and phospholipase C-gamma) were minimally affected. In naive T cells, RCC-S also partially blocked induction of IL-2R alpha-, beta- and gamma-chain expression when stimulating via the TCR/CD3 complex with anti-CD3 Ab. To determine whether RCC-S suppressed IL-2-dependent signaling, primed T cells were employed since RCC-S had no effect on IL-2R expression but did down-regulate Jak3 expression and, to a lesser degree, p56(lck) and p59(fyn). Reduction in Jak3 correlated with impaired IL-2-dependent proliferation and signal transduction. This included loss of Jak1 kinase tyrosine phosphorylation and no induction of the proto-oncogene, c-Myc. These findings suggest that soluble products from tumors may suppress T cell proliferation through a mechanism that involves down-regulation of Jak3 expression and inhibition of IL-2-dependent signaling pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号