首页 | 本学科首页   官方微博 | 高级检索  
     

惯性动捕数据驱动下的智能下肢假肢运动意图识别方法
引用本文:苏本跃, 王婕, 刘双庆, 盛敏, 向馗. 惯性动捕数据驱动下的智能下肢假肢运动意图识别方法. 自动化学报, 2020, 46(7): 1517-1530. doi: 10.16383/j.aas.c180070
作者姓名:苏本跃  王婕  刘双庆  盛敏  向馗
作者单位:1.安庆师范大学计算机与信息学院 安庆 246133;;2.安徽省智能感知与计算重点实验室 安庆 246133;;3.安庆师范大学数学与计算科学学院 安庆 246133;;4.武汉理工大学自动化学院 武汉 430070
基金项目:国家自然科学基金61603003国家自然科学基金11471093教育部科技发展中心"云数融合科教创新"基金2017A09116安徽省高校优秀拔尖人才培育资助项目gxbjZD26
摘    要:为了解决传统意图识别方法使用多模态传感器信号所带来的复杂性以及识别转换模式一般具有滞后性等问题, 本文提出了基于惯性传感器的智能下肢假肢的运动意图实时识别方法.从模式识别的角度看, 在对象空间到模式空间的转换中, 对运动模式尤其是运动转换模式进行了重定义; 在模式采集中, 采用在患侧的运动模式进行转换之前, 采集绑定在健侧的传感器于摆动相前期所产生的时序运动数据, 选择均值、方差等特征统计量和支持向量机分类器对其进行特征选择提取与特征分类的策略, 实现对残疾人运动意图准确、实时地识别.实验结果表明, 本文所提出的方法可以识别出单肢截肢患者在不同地形下的运动意图, 包括平地行走、上楼、下楼、上坡、下坡5种稳态模式, 识别率可达到97.52 %, 并且加入在5种模式之间相互转换的转换模式之后, 识别率可达到95.12 %.本文方法可以极大提高智能下肢假肢的控制性能, 实现智能假肢能根据人的运动意图在多种运动模式之间进行自然、无缝的状态切换.

关 键 词:运动意图识别   惯性传感器   模式空间   转换模式   摆动相
收稿时间:2018-01-27

An Improved Motion Intent Recognition Method for Intelligent Lower Limb Prosthesis Driven by Inertial Motion Capture Data
SU Ben-Yue, WANG Jie, LIU Shuang-Qing, SHENG Min, XIANG Kui. An Improved Motion Intent Recognition Method for Intelligent Lower Limb Prosthesis Driven by Inertial Motion Capture Data. ACTA AUTOMATICA SINICA, 2020, 46(7): 1517-1530. doi: 10.16383/j.aas.c180070
Authors:SU Ben-Yue  WANG Jie  LIU Shuang-Qing  SHENG Min  XIANG Kui
Affiliation:1. School of Computer and Information, Anqing Normal University, Anqing 246133;;2. University Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing 246133;;3. School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133;;4. School of Automation, Wuhan University of Technology, Wuhan 430070
Abstract:In order to overcome the drawbacks of conventional intention recognition methods, including complexities associated with multi-modal sensor signals and lags of transitional state recognition, this paper proposes a real-time motion intent recognition method for intelligent lower limb prosthesis base on inertial sensors. From the perspective of pattern recognition, the motion patterns, especially the motion transformation patterns, are redeflned in the transformation from object space to pattern space. In pattern acquisition, our strategy is that, prior to the movement mode conversion of lower limb prosthesis, motion time-series data generated by the sensors bound to the contralateral side during the early swing phase are collected, and the corresponding statistical features such as mean and variance are extracted. Feature classiflcation is performed by using a support vector machine classifler to achieve the accurate, real-time identiflcation for motion intent of the disabled movement with intelligent lower limb prosthesis. Our proposal is able to recognize various motion intents containing 5 steady states as well as 8 transitional states among the steady states on difierent terrains including level ground, stair ascent, stair descent, ramp ascent and ramp descent. Experimental results show the recognition accuracy can reach at 97.52 % and 95.12 % on those patterns from steady states and transitional states, respectively. The proposed method can greatly improve the control performance of intelligent lower limb prostheses, and can achieve the natural and seamless state switch of the intelligent prosthesis movement according to the intention of the human movement.
Keywords:Motion intent recognition  inertial sensors  pattern space  transitional state  swing phaseRecommended by Associate Editor CHEN Ji-Ming  >
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号