首页 | 本学科首页   官方微博 | 高级检索  
     

深度EM胶囊网络全重叠手写数字识别与分离EI北大核心CSCD
作者姓名:姚红革  董泽浩  喻钧  白小军
作者单位:1.西安工业大学计算机科学与工程学院 西安 710021
摘    要:基于胶囊网络的向量神经元思想和期望最大算法(Expectation-maximization,EM),设计了一种以EM为向量聚类算法的深度胶囊网络(Deep capsule network,DCN),实现了重叠手写数字的识别与分离.该网络由两部分组成,第1部分是“识别网络”,将EM算法改为EM向量聚类算法,以替换原胶囊网络CapsNet中的迭代路由部分,这一改动优化了网络的运算过程,实现了重叠数字识别.第2部分是“重构网络”,由结构完全相同的两个并行网络组成,对双向量进行并行重构,实现了重叠数字的分离.实验结果显示,对于100%全重叠手写数字图片本网络识别率达到了96%,对比CapsNet在80%的重叠率下95%的识别率,本文网络在难度提升的情况下,识别率有明显提高,能够将完全重叠的两张手写数字进行图片进行准确地分离.

关 键 词:深度胶囊网络  重叠数字识别  重叠数字分离  EM向量聚类
收稿时间:2019-12-18
本文献已被 维普 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号