首页 | 本学科首页   官方微博 | 高级检索  
     

生成式不完整多视图数据聚类
引用本文:赵博宇, 张长青, 陈蕾, 刘新旺, 李泽超, 胡清华. 生成式不完整多视图数据聚类. 自动化学报, 2021, 47(8): 1867−1875 doi: 10.16383/j.aas.c200121
作者姓名:赵博宇  张长青  陈蕾  刘新旺  李泽超  胡清华
作者单位:1.天津大学智能与计算学部 天津 300350;;2.江苏省大数据安全与智能处理重点实验室 南京 210023;;3.南京邮电大学计算机学院 南京 210023;;4.国防科技大学计算机学院 长沙 410073;;5.南京理工大学计算机科学与工程学院 南京 210094
基金项目:国家自然科学基金(61976151, 61732011, 61872190), 南京邮电大学江苏省大数据安全与智能处理重点实验室资助
摘    要:基于自表示子空间聚类的多视图聚类引起越来越多的关注. 大多数现有算法假设每个样本的所有视图都可获得, 然而在实际应用中, 由于各种因素, 可能会导致某些视图缺失. 为了对视图不完整数据进行聚类, 本文提出了一种在统一框架下同时执行缺失视图补全和多视图子空间聚类的方法. 具体地, 缺失视图是由已观测视图数据约束的隐表示生成的. 此外, 多秩张量应用于挖掘不同视图之间的高阶相关性. 这样通过隐表示和高阶张量同时挖掘了不同视图以及所有样本(即使是不完整视图样本)之间的相关性. 本文使用增广拉格朗日交替方向最小化(AL-ADM)方法求解优化问题. 在真实数据集上的实验结果表明, 我们的方法优于最新的多视图聚类算法, 具有更好的聚类准确度和鲁棒性.

关 键 词:视图缺失   多视图聚类   张量   生成式模型
收稿时间:2020-03-11

Generative Model For Partial Multi-view Clustering
Zhao Bo-Yu, Zhang Chang-Qing, Chen Lei, Liu Xin-Wang, Li Ze-Chao, Hu Qing-Hua. Generative model for partial multi-view clustering. Acta Automatica Sinica, 2021, 47(8): 1867−1875 doi: 10.16383/j.aas.c200121
Authors:ZHAO Bo-Yu  ZHANG Chang-Qing  CHEN Lei  LIU Xin-Wang  LI Ze-Chao  HU Qing-Hua
Affiliation:1. School of Intelligence and Computing, Tianjin University, Tianjin 300350;;2. Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing 210023;;3. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023;;4. School of Computer, National University of Defense Technology, Changsha 410073;;5. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
Abstract:There has been a growing interest in multi-view clustering over self-representation-based subspace clustering. Most existing algorithms assume that all views for each sample are available. However, in real applications, some views may be missing which produces data with partial views. To cluster the incomplete data, we propose a generative model to simultaneously perform view imputation and multi-view subspace clustering in a unified framework. Specifically, the missing views are generated by a latent representation which is constrained by the observed views. Moreover, multi-rank tensor is employed to explore the higher-order correlations across different views. In this way, the correlations across different views and all samples even with incomplete views are simultaneously explored by the latent representation and high-order tensor. We solve the optimization problem by using augmented Lagrangian alternating direction minimization (AL-ADM) method. Experimental results on real-world datasets demonstrate the superior performance and robustness of our method over state-of-the-art multi-view clustering algorithms.
Keywords:View missing  multi-view clustering  tensor  generative model
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号