首页 | 本学科首页   官方微博 | 高级检索  
     

面向边缘计算应用的宽度孪生网络
引用本文:李逸楷, 张通, 陈俊龙. 面向边缘计算应用的宽度孪生网络. 自动化学报, 2020, 46(10): 2060−2071 doi: 10.16383/j.aas.c200555
作者姓名:李逸楷  张通  陈俊龙
作者单位:1.华南理工大学计算机科学与工程学院 广州 510006;;2.琶洲实验室 广州 510355
基金项目:国家自然科学基金(61702195, 61751202, U1813203, U1801262, 61751205), 国家科技部重点专项(2019YFA0706200, 2019YFB1703600), 广州市重大科技项项目(202007030006)资助
摘    要:边缘计算是将计算、存储、通信等任务分配到网络边缘的计算模式. 它强调在用户终端附近执行数据处理过程, 以达到降低延迟, 减少能耗, 保护用户隐私等目的. 然而网络边缘的计算、存储、能源资源有限, 这给边缘计算应用的推广带来了新的挑战. 随着边缘智能的兴起, 人们更希望将边缘计算应用与人工智能技术结合起来, 为我们的生活带来更多的便利. 许多人工智能方法, 如传统的深度学习方法, 需要消耗大量的计算、存储资源, 并且伴随着巨大的时间开销. 这不利于强调低延迟的边缘计算应用的推广. 为了解决这个问题, 我们提出将宽度学习系统(Broad learning system, BLS)等浅层网络方法应用到边缘计算应用领域, 并且设计了一种宽度孪生网络算法. 我们将宽度学习系统与孪生网络结合起来用于解决分类问题. 实验结果表明我们的方法能够在取得与传统深度学习方法相似精度的情况下降低时间和资源开销, 从而更好地提高边缘计算应用的性能.

关 键 词:宽度学习系统   边缘计算   孪生网络   浅层网络   边缘智能
收稿时间:2020-07-15
修稿时间:2020-08-18

Broad Siamese Network for Edge Computing Applications
Li Yi-Kai, Zhang Tong, Chen Jun-Long. Broad Siamese network for edge computing applications. Acta Automatica Sinica, 2020, 46(10): 2060−2071 doi: 10.16383/j.aas.c200555
Authors:LI Yi-Kai  ZHANG Tong  CHEN C. L. Philip
Affiliation:1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006;;2. Pazhou Laboratory, Guangzhou 510335
Abstract:Edge computing is a paradigm that allocates computing, storage, communication tasks to the edge of network. It emphasizes that data processing should be placed in the proximity of user terminals in order to reduce latency and energy consumption while protecting user privacy. However, resources for computation, storage and power at the edge of network are limited, which brings new challenges to edge computing applications. With the emergence of edge intelligence, people prefer to combine edge computing applications with artificial intelligence techniques to bring more convenience to our lives. Many artificial intelligence methods such as traditional deep learning methods, need to consume a lot of computation and storage resources with a huge time consumption. It is not conducive to the popularity of edge computing applications, which always require low latency. In order to resolve such a problem, we propose that shallow network methods such as broad learning system can be applied in edge computing applications and design a broad Siamese network algorithm. We combine broad learning system (BLS) with Siamese network for classification tasks. Experimental results show that our method can reduce the cost of time and resources, while achieving a similar result as deep learning methods, consequently improving the performance of edge computing applications.
Keywords:Broad learning system (BLS)  edge computing  Siamese network  shallow network  edge intelligence
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号