首页 | 本学科首页   官方微博 | 高级检索  
     

一种求解符号回归问题的粒子群优化算法
引用本文:马炫, 李星, 唐荣俊, 刘庆. 一种求解符号回归问题的粒子群优化算法. 自动化学报, 2020, 46(8): 1714−1726 doi: 10.16383/j.aas.c180035
作者姓名:马炫  李星  唐荣俊  刘庆
作者单位:1.西安理工大学自动化与信息工程学院 西安 710048;;2.陕西省复杂系统控制与智能信息处理重点实验室 西安 710048
基金项目:国家自然科学基金61502385
摘    要:符号回归以构建一个能拟合给定数据集的函数模型为目的, 是对基本函数、运算符、变量等进行组合优化的过程.本文提出了一种求解符号回归问题的粒子群优化算法.算法以语法树对函数模型进行表达, 采用基因表达式将语法树编码为一个粒子, 设计了粒子的飞行方法及$r$-邻域环状拓扑的粒子学习关系.为使粒子具有跳出局部极值的能力和减轻粒子快速趋同对全局寻优造成的不利影响, 分别设计了突变算子和散开算子.此外, 为了得到比较简洁的函数模型, 在粒子的评价函数中以罚函数的方式对编码的有效长度进行控制.仿真实验表明, 提出的算法可以获得拟合精度更高、简洁性更好的函数模型.

关 键 词:基因表达式编程   粒子群优化算法   符号回归   演化建模
收稿时间:2018-01-16

A Particle Swarm Optimization Approach for Symbolic Regression
Ma Xuan, Li Xing, Tang Rong-Jun, Liu Qing. A particle swarm optimization approach for symbolic regression. Acta Automatica Sinica, 2020, 46(8): 1714−1726 doi: 10.16383/j.aas.c180035
Authors:MA Xuan  LI Xing  TANG Rong-Jun  LIU Qing
Affiliation:1. School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048;;2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an 710048
Abstract:Symbolic regression is to construct a function model that fits a given dataset. It is the process of optimally combining various basic functions, operators, and variables. This paper proposes a particle swarm optimization-based algorithm for symbolic regression. In the proposed algorithm, the functional model to be established is represented as a syntax tree, which is encoded as a particle through gene-expression. A specific implementation of particles flying and the $r$-neighborhood learning mechanism of particle swarm were designed. To make particles be capable of jumping out local extremum and to mitigate the negative influence on global optimization resulted from the fast convergence of the particle swarm, mutation and scatter are respectively introduced into the proposed algorithm as operators. Besides, in order to obtain concise functional model, the valid length of the gene-expression-based coding scheme is controlled in manner of introducing a penalty term to the particle evaluation function. Exhaustive simulation experiments are carried out and the results show that, the proposed algorithm can obtain the functional model with higher fitting precision and better conciseness.
Keywords:Gene-expression programming  particle swarm optimization  symbolic regression  evolutionary modelingRecommended by Associate Editor WU Zhou  >
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号