首页 | 本学科首页   官方微博 | 高级检索  
     

基于激光雷达的道路不平度及可行驶区域检测
引用本文:闫德立,高尚,李韶华,霍萌. 基于激光雷达的道路不平度及可行驶区域检测[J]. 激光技术, 2022, 46(5): 624-629. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.007
作者姓名:闫德立  高尚  李韶华  霍萌
作者单位:石家庄铁道大学 交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043;石家庄铁道大学 电气与电子工程学院,石家庄050043;石家庄铁道大学 电气与电子工程学院,石家庄050043;河北省疾病预防控制中心,石家庄050021
基金项目:国家自然科学基金;河北省重点研发计划资助项目;省部共建交通工程结构力学行为与系统安全国家重点实验室自主课题资助项目;石家庄铁道大学研究生创新基金资助项目
摘    要:为了提高室外场景中车载激光雷达道路不平度信息检测的精度, 采用随机降采样和局部特征聚合的网络结构对道路环境信息进行提取分割。在分割过程中加入随机降采样的方法, 从而提高点云信息的计算效率, 为解决道路环境信息分割过程中关键特征丢失的问题, 加入局部特征聚合器来增加每个3维点云的接受域来保留几何细节。结果表明, 所提出的算法可以准确识别道路环境信息, 对于凸包、凹坑、道路可行驶区域的识别精度分别达到71.87%, 82.71%, 93.01%, 与传统卷积神经网络相比有显著提升。该研究可高效提取道路不平度及道路可行驶区域信息, 从而提高了车辆的主动安全性与平顺性。

关 键 词:激光技术  随机降采样  局部特征聚合  点云
收稿时间:2021-08-18

Detection of road roughness and drivable area based on LiDAR
Abstract:In order to improve the accuracy of road unevenness detection by vehicle-mounted lidar in outdoor scenes, the road environment information was extracted and segmented by the network structure of random down-sampling and local feature aggregation. Random sampling method was added in the segmentation process to improve the computing efficiency of high point cloud information. To solve the problem of the loss of key features in the segmentation process of road environment information, local feature aggregator was added to increase the acceptance domain of each 3-D point cloud to retain geometric details. The results show that the proposed algorithm can accurately identify the road environment information, and the recognition accuracy of convex hull, pit, and road able area reaches 71.87%, 82.71%, and 93.01% respectively, which is significantly improved compared with the traditional convolution neural network. This study can efficiently extract the information of road roughness and road able area. Thus, the active safety and ride comfort of the vehicle are improved.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《激光技术》浏览原始摘要信息
点击此处可从《激光技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号