首页 | 本学科首页   官方微博 | 高级检索  
     

视频压缩感知多假设局部增强重构算法
引用本文:汤瑞东, 杨春玲, 禤韵怡. 视频压缩感知多假设局部增强重构算法. 自动化学报, 2022, 48(8): 1984−1993 doi: 10.16383/j.aas.c190408
作者姓名:汤瑞东  杨春玲  禤韵怡
作者单位:1.华南理工大学电子与信息学院 广州 510641
基金项目:广东省自然科学基金重点项目(2017A030311028), 广东省自然科学基金(2016A030313455)资助
摘    要:在基于多假设预测的视频压缩感知重构中, 不同图像块对应的假设集匹配程度差异较大, 因此重构难度差异明显. 本文提出多假设局部增强重构算法(Local enhancement reconstruction algorithm based on multi-hypothesis prediction, MH-LE), 利用帧间相关性对图像块进行分类后针对运动图像块提出像素域双路匹配策略, 通过强化图像块基本特征来提高相似块匹配效果, 获取更高质量的假设集; 同时将结构相似度评价标准引入假设块权值分配过程, 提高预测精度. 仿真结果表明, 所提算法的重构质量明显优于其他多假设预测重构算法. 和基于组稀疏的重构算法相比, 所提算法具有更快的重构速度, 在大部分的采样率条件下具有更高的重构质量.

关 键 词:视频压缩感知   多假设预测   相似块匹配   增强重构
收稿时间:2019-05-27

Local Enhancement Reconstruction Algorithm Based on Multi-hypothesis Prediction in Compressed Video Sensing
Tang Rui-Dong, Yang Chun-Ling, Xuan Yun-Yi. Local enhancement reconstruction algorithm based on multi-hypothesis prediction in compressed video sensing. Acta Automatica Sinica, 2022, 48(8): 1984−1993 doi: 10.16383/j.aas.c190408
Authors:TANG Rui-Dong  YANG Chun-Ling  XUAN Yun-Yi
Affiliation:1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641
Abstract:In multi-hypothesis prediction-based compressed video sensing reconstruction algorithms, the matching degrees of the hypothesis set corresponding to different image blocks are quite different, so the reconstruction difficulty of different blocks is obviously different. In this paper, a local enhancement reconstruction algorithm based on multi-hypothesis (MH-LE) is proposed. Image blocks are classified into two categories and a pixel domain dual channel matching strategy is proposed for moving image blocks, where the basic features of the image blocks are enhanced to improve the matching effectivity of similar blocks and obtain a higher quality hypothesis set. Besides, the structural similarity evaluation criteria are introduced into the matching block weight assignment process to improve prediction accuracy. The simulation results show that the reconstruction quality of the proposed algorithm is superior to other multi-hypothesis prediction-based reconstruction algorithms. Compared with the group sparsity-based reconstruction algorithms, the proposed algorithm possesses faster reconstruction speed and higher reconstruction quality at most sampling rates.
Keywords:Compressed video sensing (CVS)  multi-hypothesis prediction  similar block matching  enhancement reconstruction
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号