首页 | 本学科首页   官方微博 | 高级检索  
     


On Dual-Mode Driving Control Method for a Novel Unmanned Tractor With High Safety and Reliability
Authors:Wei Lu  Jiacheng Li  Huanhuan Qin  Lei Shu  Aiguo Song
Abstract:Due to the non-standardization and complexity of the farmland environment, it is always a huge challenge for tractors to achieve fully autonomy (work at Self-driving mode) all the time in agricultural industry. Whereas, when tractors work in the Tele-driving (or Remote driving) mode, the operators are prone to fatigue because they need to concentrate for long periods of time. In response to these, a dual-mode control strategy was proposed to integrate the advantages of both approaches, i.e., by combing Self-driving at most of the time with Tele-driving under special (complex and hazardous) conditions through switching control method. First, the state switcher was proposed, which is used for smooth switching the driving modes according to different working states of a tractor. Then, the state switching control law and the corresponding subsystem tracking controllers were designed. Finally, the effectiveness and superiority of the dual-mode control method were evaluated via actual experimental testing of a tractor whose results show that the proposed control method can switch smoothly, stably, and efficiently between the two driving modes automatically. The average control accuracy has been improved by 20% and 15% respectively, compared to the conventional Tele-driving control and Self-driving control with low-precision navigation. In conclusion, the proposed dual-mode control method can not only satisfy the operation in the complex and changeable farmland environment, but also free drivers from high-intensity and fatiguing work. This provides a perfect application solution and theoretical support for the intelligentization of unmanned farm agricultural machinery with high safety and reliability. 
Keywords:Dual-mode control  safety and reliability  self-driving (SD)  tele-driving (TD)  unmanned tractor
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号