首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应RBF神经网络的超空泡航行体反演控制
引用本文:李洋, 刘明雍, 张小件. 基于自适应RBF神经网络的超空泡航行体反演控制. 自动化学报, 2020, 46(4): 734-743. doi: 10.16383/j.aas.2018.c170387
作者姓名:李洋  刘明雍  张小件
作者单位:1.西北工业大学航海学院 西安 710072
基金项目:国家自然科学基金51379176国家自然科学基金61473233
摘    要:针对超空泡航行体姿轨控制普遍存在的模型不确定性问题进行相关研究.为此, 首先对其动力学特性进行分析, 并建立了超空泡航行体的动力学名义模型, 随后将其改写为不确定反馈系统, 然后利用反演控制方法设计超空泡航行体姿轨控制器, 针对模型中的未知函数利用径向基函数(Radial basis function, RBF)神经网络进行逼近并补偿, 由基于Lyapunov稳定理论设计的自适应方法计算神经网络的权重, 并给出稳定性证明.仿真研究验证了控制器设计的有效性.

关 键 词:自适应控制   RBF神经网络   超空泡航行体   反演控制
收稿时间:2017-07-12

Adaptive RBF Neural Network Based Backsteppting Control for Supercavitating Vehicles
LI Yang, LIU Ming-Yong, ZHANG Xiao-Jian. Adaptive RBF Neural Network Based Backsteppting Control for Supercavitating Vehicles. ACTA AUTOMATICA SINICA, 2020, 46(4): 734-743. doi: 10.16383/j.aas.2018.c170387
Authors:LI Yang  LIU Ming-Yong  ZHANG Xiao-Jian
Affiliation:1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072
Abstract:This paper is proposed for the problems of model uncertainty such as the control of supercavitating vehicles. Firstly, the nominal model of supercavitating vehicles is built based on the analysis of the vehicle dynamic characteristics. Then we rewrite it as the uncertainty feedback system, and an orbit and attitude controller is designed via the backstepping control theory. The radial basis function (RBF) neural networks are presented to approximate and compensate the unknown functions, otherwise, the weights of the neural networks are designed by the adaptive method based on the Lyapunov theory, and the stability proof is also proposed. Finally, the simulations prove the effectiveness of the above controllers.
Keywords:Adaptive control  radial basis function (RBF) neural network  supercavitating vehicles  backsteppting controlRecommended by Associate Editor NI Mao-Lin  >
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号