Sulfobutylation of Beta-Cyclodextrin Enhances the Complex Formation with Mitragynine: An NMR and Chiroptical Study |
| |
Authors: | Bianka Vá rnai,Ferenc Zsila,Zoltá n Szaká cs,Zsó fia Gará di,Milo Malanga,Szabolcs Bé ni |
| |
Affiliation: | 1.Department of Pharmacognosy, Semmelweis University, Üllői út. 26, H-1085 Budapest, Hungary; (B.V.); (Z.G.);2.Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary;3.Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary;4.CycloLab, Cyclodextrin R&D Ltd., Illatos út. 7, H-1097 Budapest, Hungary; |
| |
Abstract: | Mitragynine (MTR), the main indole alkaloid of the well-known plant kratom (Mitragyna speciosa), is one of the most studied natural products nowadays, due to its remarkable biological effects. It is a partial agonist on the opioid receptors, and as such relieves pain without the well-known side-effects of the opioids applied in the clinical practice. MTR and its derivatives therefore became novel candidates for drug development. The poor aqueous solubility and low bioavailability of drugs are often improved by cyclodextrins (CyDs) as excipients through host-guest type complex formation. Among the wide variety of CyDs, sulfobutylether-beta-cyclodextrin (SBEβCyD) is frequently used and official in the European and U.S. Pharmacopoeia. Herein, the host-guest complexation of MTR with βCyD and SBEβCyD was studied using chiroptical and NMR spectroscopy. It was found by NMR measurements that MTR forms a rather weak (logβ11 = 0.8) 1:1 host-guest complex with βCyD, while the co-existence of the 2MTR∙SBEβCyD and MTR∙SBEβCyD species was deducted from 1H NMR titrations in the millimolar MTR concentration range. Sulfobutylation of βCyD significantly enhanced the affinity towards MTR. The structure of the formed inclusion complex was extensively studied by circular dichroism spectroscopy and 2D ROESY NMR. The insertion of the indole moiety was confirmed by both techniques. |
| |
Keywords: | mitragynine, sulfobutylether-β -cyclodextrin, NMR, circular dichroism, complex stability |
|
|