首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of sheet forming limits with Marciniak and Kuczynski analysis using combined isotropic-nonlinear kinematic hardening
Authors:Morteza Nurcheshmeh  Daniel E Green
Affiliation:Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue Windsor, Ontario, Canada N9B 3P4
Abstract:The forming limit curve (FLC), a plot of the limiting principal surface strains that can be sustained by sheet metals prior to the onset of localized necking, is useful for characterizing the formability of sheet metal and assessing the forming severity of a drawing or stamping process. Both experimental and theoretical work reported in the literature has shown that the FLC is significantly strain-path dependent. In this paper, a modified Marciniak and Kuczynski (MK) approach was used to compute the FLC in conjunction with two different work-hardening models: an isotropic hardening model and a mixed isotropic-nonlinear kinematic hardening model, which is capable of describing the Bauschinger effect. Predictions of the FLC using the MK analysis have been shown to be dependent on the shape of the initial yield locus and on its evolution during work hardening; therefore the hardening model has an influence on the predicted FLC. In this investigation, published experimental FLCs of AISI-1012 low carbon steel and 2008-T4 aluminum alloy sheets that were subjected to various nonlinear loading paths were compared to predictions using both hardening models. The predicted FLCs were found to correlate quite well with experimental data and the effects of strain path changes and of the hardening model on predicted FLCs are discussed.
Keywords:Forming limit curve  Strain path dependency  MK analysis  Strain localization  Nonlinear kinematic hardening  Mixed hardening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号