首页 | 本学科首页   官方微博 | 高级检索  
     


Constructing a Thin Disordered Self-Protective Layer on the LiNiO2 Primary Particles Against Oxygen Release
Authors:Jinniu Chen  Yang Yang  Yushu Tang  Yifan Wang  Hang Li  Xianghui Xiao  Suning Wang  Mariyam Susana Dewi Darma  Martin Etter  Alexander Missyul  Akhil Tayal  Michael Knapp  Helmut Ehrenberg  Sylvio Indris  Weibo Hua
Affiliation:1. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China;2. National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, 11973 USA;3. Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;4. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;5. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 China

Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;6. Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany;7. CELLS-ALBA Synchrotron, Cerdanyola del Valles, E-08290 Barcelona, Spain

Abstract:One of the major challenges facing the application of layered LiNiO2 (LNO) cathode materials is the oxygen release upon electrochemical cycling. Here it is shown that tailoring the provided lithium content during synthesis process can create a disordered layered Li1-xNi1+xO2 phase at the primary particle surface. The disordered surface, which serves as a self-protective layer to alleviate the oxygen loss, possesses the same layered rhombohedral structure (R 3 ¯ $\bar{3}$ m) as the inner core of primary particles of the Li1-xNi1+xO2 (x ≈ 0). With advanced synchrotron-based x-ray 3D imaging and spectroscopic techniques, a macroporous architecture within the agglomerates of LNO with ordered surface (LNO-OS) is revealed after only 40 cycles, concomitant with the reduction of nickel on the primary particle surface throughout the whole secondary particles. Such chemomechanical degradation accelerates the deterioration of LNO-OS cathodes. Comparably, there are only slight changes in the nickel valence state and interior architecture of LNO with a thin disordered surface layer (LNO-DS) after cycling, mainly arising from an improved robustness of the oxygen framework on the surface. More importantly, the disordered surface can suppress the detrimental H2 ? H3 phase transition upon cycling compared to the ordered one.
Keywords:chemomechanical degradation  LiNiO 2 cathodes  oxygen release  self-protecting layers  tomography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号