首页 | 本学科首页   官方微博 | 高级检索  
     


Photo-Curing 3D Printing of Thermosetting Sacrificial Tooling for Fabricating Fiber-Reinforced Hollow Composites
Authors:Baoming Zhao  Cheng Hao  Yu-Chung Chang  Yiding Cao  Tuan Liu  Mingen Fei  Lin Shao  Jinwen Zhang
Affiliation:School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, WA, 99164 USA
Abstract:Carbon fiber-reinforced hollow composites play a vital role in lightweighting modern cars and aircrafts. Fabrication of such hollow composites with seamless internal finish requires sacrificial tooling that can be used under pressure and high temperature. For the very first time, high performance sacrificial tooling that can be used to fabricate fiber-reinforced hollow composites is produced using photocuring 3D printing technology. This is achieved by developing UV-curable resins containing highly soluble yet hydrolysable acetal acrylate cross-linker and hydrophilic 4-acryloylmorpholine monomer. It is found that the cross-linker content greatly affects the printing speed. Further, the widely adopted UV post-curing method is found to have negligible impact on improving the thermal-mechanical properties of printed structures. After thermal post-treatment, printed sacrificial tooling exhibits a heat deflection temperature of 112 °C at 0.455 MPa and an average coefficient of linear thermal expansion of 59 ppm °C−1 between 30 and 100 °C. As a result, printed tooling enables fabrication of carbon fiber-reinforced hollow composites with complex geometry, which shows a tensile strength of 802 MPa and an elastic modulus of 50.2 GPa.
Keywords:3D printing  cleavable cross-linkers  fiber-reinforced composites  photo-curing  sacrificial tooling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号