首页 | 本学科首页   官方微博 | 高级检索  
     


Triple Interface Optimization of Ru-based Electrocatalyst with Enhanced Activity and Stability for Hydrogen Evolution Reaction
Authors:Guozheng Li  Tong Sun  Hua-Jie Niu  Yu Yan  Tong Liu  Sisi Jiang  Qinglin Yang  Wei Zhou  Lin Guo
Affiliation:1. School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China;2. College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao, 266071 China
Abstract:A challenging task is to promote Ru atom economy and simultaneously alleviate Ru dissolution during the hydrogen evolution reaction (HER) process. Herein, Ru nanograins (≈1.7 nm in size) uniformly grown on 1T-MoS2 lace-decorated Ti3C2Tx MXene sheets (Ru@1T-MoS2-MXene) are successfully synthesized with three types of interfaces (Ru/MoS2, Ru/MXene, and MoS2/MXene). It gives high mass activity of 0.79 mA µgRu−1 at an overpotential of 100 mV, which is ≈36 times that of Ru NPs. It also has a much smaller Ru dissolution rate (9 ng h−1), accounting for 22% of the rate for Ru NPs. Electrochemical tests, scanning electrochemical microscopy measurements combined with DFT calculations disclose the role of triple interface optimization in improved activity and stability. First, 2D MoS2 and MXene can well disperse and stabilize Ru grains, giving larger electrochemical active area. Then, Ru/MoS2 interfaces weakening H* adsorption energy and Ru/MXene interfaces enhancing electrical conductivity, can efficiently improve the activity. Next, MoS2/MXene interfaces can protect MXene sheet edges from oxidation and keep 1T-MoS2 phase stability during the long-term catalytic process. Meanwhile, Ru@1T-MoS2-MXene also displays superior activity and stability in neutral and alkaline media. This work provides a multiple-interface optimization route to develop high-efficiency and durable pH-universal Ru-based HER electrocatalysts.
Keywords:activity  hydrogen evolution reactions  interface optimization  Ru  stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号