首页 | 本学科首页   官方微博 | 高级检索  
     


Disulfide bond assignment in human interleukin-7 by matrix-assisted laser desorption/ionization mass spectroscopy and site-directed cysteine to serine mutational analysis
Authors:L Cosenza  E Sweeney  JR Murphy
Affiliation:Section of Biomolecular Medicine, Evans Department of Clinical Research and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
Abstract:Interleukin-7 (IL-7) is a proteinaceous biological response modifier that has a bioactive tertiary structure dependent on disulfide bond formation. Disulfide bond assignments in human (h)IL-7 are based upon the results of matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy and Cys to Ser mutational analyses. A gene encoding the hIL-7 was synthesized incorporating Escherichia coli codon usage bias and was used to express biologically active protein as determined by stimulation of precursor B-cell proliferation. MALDI mass spectroscopic analysis of trypsin-digested hIL-7 was performed and compared with the anticipated results of a simulated tryptic digestion. Many of the anticipated hIL-7 tryptic fragments were detected including one with a molecular mass equivalent to the sum of two polypeptides linked through a disulfide bond formed from Cys residues (Cys3 and Cys142). Subsequently, Cys to Ser substitution mutational analyses were performed. A hIL-7 variant with all six Cys substituted with Ser was found to be biologically inactive (EC50 > 1 x 10(-7) M). In contrast, a family of single disulfide bond-forming variants of hIL-7 were constructed by reintroducing Cys pairs (Cys3-Cys142, Cys35-Cys130, and Cys48-Cys93), and each could stimulate cell proliferation with an EC50 of 4 x 10(-9), 2 x 10(-8), and 2 x 10(-9) M, respectively. In single disulfide bond-forming mutants of hIL-7, the ability to stimulate cell proliferation was abolished in the presence of 2 mM dithiothreitol. The results presented strongly suggest that only a single disulfide bond is required for hIL-7 to form a tertiary structure capable of stimulating precursor B-cell proliferation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号