首页 | 本学科首页   官方微博 | 高级检索  
     


Innovative seismic design optimization with reliability constraints
Authors:Nikos D Lagaros  Manolis Papadrakakis
Affiliation:Institute of Structural Analysis and Seismic Research, National Technical University of Athens, 9 Iroon Polytechniou Strasse, Zografou Campus, 157 80 Athens, Greece
Abstract:Performance-Based Design (PBD) methodologies is the contemporary trend in designing better and more economic earthquake-resistant structures where the main objective is to achieve more predictable and reliable levels of safety and operability against natural hazards. On the other hand, reliability-based optimization (RBO) methods directly account for the variability of the design parameters into the formulation of the optimization problem. The objective of this work is to incorporate PBD methodologies under seismic loading into the framework of RBO in conjunction with innovative tools for treating computational intensive problems of real-world structural systems. Two types of random variables are considered: Those which influence the level of seismic demand and those that affect the structural capacity. Reliability analysis is required for the assessment of the probabilistic constraints within the RBO formulation. The Monte Carlo Simulation (MCS) method is considered as the most reliable method for estimating the probabilities of exceedance or other statistical quantities albeit with excessive, in many cases, computational cost. First or Second Order Reliability Methods (FORM, SORM) constitute alternative approaches which require an explicit limit-state function. This type of limit-state function is not available for complex problems. In this study, in order to find the most efficient methodology for performing reliability analysis in conjunction with performance-based optimum design under seismic loading, a Neural Network approximation of the limit-state function is proposed and is combined with either MCS or with FORM approaches for handling the uncertainties. These two methodologies are applied in RBO problems with sizing and topology design variables resulting in two orders of magnitude reduction of the computational effort.
Keywords:Performance-Based Design  Reliability-based optimization  Response surface  Monte Carlo  Neural networks  Sizing-topology design variables  Earthquake resistant structures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号