首页 | 本学科首页   官方微博 | 高级检索  
     

基于内容的大数据量商标检索系统
引用本文:娄正良,黄磊,刘昌平. 基于内容的大数据量商标检索系统[J]. 小型微型计算机系统, 2005, 26(8): 1397-1400
作者姓名:娄正良  黄磊  刘昌平
作者单位:中国科学院,自动化研究所,文字识别工程中心,北京,100080
基金项目:国家“八六三”项目(2001AA114130)资助
摘    要:到目前为止,大数据量的图像检索依然是一个难题,提出了运行在一种大型数据库上的基于内容的快速的商标图像检索.首先,从商标图像中提取两种统计特征,然后采用概率主成分分析降维,生成特征字典一数据库中商标图像集的一个特征映射.在检索阶段,采用快速的层次检索来得到一个数目不定的候选集,再通过相关反馈进行不断的优化,将候选集的数目减少.直至符合检索要求.在国家商标局提供的30,0270商标图像上运行本系统,每一个查询时间不超过0.3秒.

关 键 词:商标检索 基于内容的检索 概率主成分分析 数目不定的候选集
文章编号:1000-1220(2005)08-1397-04
收稿时间:2004-02-02
修稿时间:2004-02-02

Content-Based Retrieval System from Huge Trademark Databases
LOU Zheng-liang,HUANG Lei,LIU Chang-ping. Content-Based Retrieval System from Huge Trademark Databases[J]. Mini-micro Systems, 2005, 26(8): 1397-1400
Authors:LOU Zheng-liang  HUANG Lei  LIU Chang-ping
Abstract:Till now, many trademark retrieval systems have been proposed. Retrieval from huge databases is still a challenging problem. This paper presented a fast content-based retrieval system from huge trademark databases. First, we introduce two appropriate statistical features. In follow, probabilistic principal component analysis (PPCA) is used to reduce feature dimension. In query stage, a fast hierarchical retrieval scheme is taken to get a variable number of candidate set. The query results will be iteratively optimized through relevance feedback. In every iteratiwe process, the size of probability relevance set is reduced to a limited number. Experiment results on a database of 300,270 trademark images demonstrate that the proposed system is fast and efficient. A query process costs only 0.3 seconds
Keywords:trademark retrieval   content-based retrieval   PPCA   variable number of candidate set
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号