首页 | 本学科首页   官方微博 | 高级检索  
     


Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. I. Potassium uptake and K balance
Authors:A Dobermann  P C Sta Cruz  K G Cassman
Affiliation:(1) International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
Abstract:Research in many countries indicates a negative K balance in intensive, irrigated rice systems but comparative studies across different environments are few. Using a uniform sampling methodology, we measured K uptake, K use efficiency, and K balance in six different fertilizer treatments of long-term fertility experiments with rice at 11 sites in five Asian countries. Depending on the absolute yield level, K uptake requirements of rice ranged from 17 to 30 kg K per ton of grain. For yields greater than 8 t ha-1, total K uptake exceeded 200 kg ha-1. The K balance at most experimental sites was negative, with an average net removal of 34–63 kg K season-1. There was significant depletion of soil K reserves at many sites. Based on these data, we estimated that the amount of K cycled annually from the soil into rice plants is 7–10 million t in irrigated rice systems of Asia. About 1 million t of this total amount is removed with the harvested grain. Present recommendations for K addition in most intensive irrigated rice domains are insufficient to replace K removal. However, response to K can only be expected on soils with deficient supply capacity and where other nutrients, particularly N and P, are not limiting. Efficient K management for rice must therefore be based on the K input/output balance, the achievable yield target, and the effective K-supplying power of the soil.
Keywords:long-term experiments  nutrient balance  potassium  rice  potassium use efficiency  potassium uptake  potassium response
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号