首页 | 本学科首页   官方微博 | 高级检索  
     


Topological evolution of laminar juncture flows under different critical parameters
Authors:Muhammad Yamin Younis  Hua Zhang  Bo Hu  Saqib Mehmood
Affiliation:1. National Key Laboratory of Fluid Mechanics, School of Aeronautical Science and Engineering, Beihang University, Beijing, 100191, China
2. School of Astronautics, Beihang University, Beijing, 100191, China
Abstract:Horseshoe vortex topological structure has been studied extensively in the past, traditional “saddle of separation” and new “attachment saddle point” topologies found in literature both have theoretical basis and experimental and computational evidences for support. The laminar incompressible juncture flows at low Reynolds numbers especially are observed to have new topology. Studies concerning the existence of the new topology though found in literature, the topological evolution and its dependency on various critical flow parameters require further investigation. A Particle Image Velocimetry based analysis is carried out to observe the effect of aspect ratio, δ*/D and shape of the obstacle on laminar horseshoe vortex topology for small obstacles. Rise in aspect ratio evolves the topology from the traditional to new for all the cases observed. The circular cross section obstacles are found more apt to having the new topology compared to square cross sections. It is noted that the sweeping effect of the fluid above the vortex system in which horseshoe vortex is immersed plays a critical role in this evolution. Topological evolution is observed not only in the most upstream singular point region of horseshoe vortex system but also in the corner region. The corner vortex topology evolves from the traditional type to new one before the topological evolution of the most upstream singular point, resulting in a new topological pattern of the laminar juncture flows “separation-attachment combination”. The study may help extend the understanding of the three-dimensional boundary layer separation phenomenon.
Keywords:horseshoe vortex  saddle of attachment  saddle of separation  topological evolution  sweeping effect
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号