首页 | 本学科首页   官方微博 | 高级检索  
     


Integrated size and topology optimization of skeletal structures with exact frequency constraints
Authors:Changhui Ni  Jun Yan  Gengdong Cheng  Xu Guo
Affiliation:1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
Abstract:The present paper studies the integrated size and topology optimization of skeletal structures under natural frequency constraints. It is found that, unlike the conventional compliance-oriented topology optimization problems, the considered problem may be strongly singular in the sense that the corresponding feasible domain may be disconnected and the global optimal solutions are often located at the tips of some separated low dimensional sub-domains when the cross-sectional areas of the structural components are used as design variables. As in the case of stress-constrained topology optimization, this unpleasant behavior may prevent the gradient-based numerical optimization algorithms from finding the true optimal topologies. To overcome the difficulties posed by the strongly singular optima, some particular forms of area/moment of inertia-density interpolation schemes, which can restore the connectedness of the feasible domain, are proposed. Based on the proposed optimization model, the probability of finding the strongly singular optimum with gradient-based algorithms can be increased. Numerical examples demonstrate the effectiveness of the proposed approach.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号