首页 | 本学科首页   官方微博 | 高级检索  
     


EFFECTS OF pH,INITIATOR, SCAVENGER,AND SURFACTANT ON THE OZONATION MECHANISM OF AN AZO DYE (ACID RED-151) IN A BATCH REACTOR
Authors:Tülay A. Özbelge  Funda Erol
Affiliation:1. Department of Chemical Engineering , Middle East Technical University , Ankara, Turkey tozbelge@metu.edu.tr;3. Department of Chemical Engineering , Middle East Technical University , Ankara, Turkey
Abstract:In this study, an initiator (Fe2+) and a scavenger (CO3 2?) were used at different concentrations in a batch reactor to investigate the reaction mechanism of ozonation of a model azo dye, namely Acid Red-151 (AR-151). Also, the effect of a nonionic surfactant known as a major pollutant in many industrial wastewaters, namely polyethylene glycol (PEG), was observed on the degradation rate of AR-151. The experimental parameters and their ranges were: pH (2.5–10), initiator (0.8–50 mg/L of Fe2+), surfactant (10–200 mg/L of PEG), and scavenger (10–500 mg/L of CO3 2?); the initial concentration of the azo dye was kept constant at 20 mg/L in all the experiments. Results showed that decomposition of ozone was enhanced with increasing pH and increasing initiator (Fe2+) concentration at a scavenger concentration of 100 mg/L, when there is no dye in the medium. A scavenger concentration of 100 mg/L CO3 2? was not sufficient to terminate the chain reactions of ozone decomposition. It was concluded that the dominant mechanism in the degradation of AR-151 was its direct oxidation with ozone molecules in water. The data obtained for the dye and chemical oxygen demand (COD) removals and total oxidation rate constants at different operating conditions were assessed in order to estimate the possible contribution of dye-oxidation by free radicals.
Keywords:Acid Red-151  Azo dye  Dye degradation  Ozonation  Radical reactions  Specific ozone utilization rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号