首页 | 本学科首页   官方微博 | 高级检索  
     


Deriving Test Suites with the Guaranteed Fault Coverage for Extended Finite State Machines
Authors:A D Ermakov  N V Yevtushenko
Affiliation:1.Tomsk State University,Tomsk,Russia
Abstract:Extended finite state machines (EFSMs) are widely used when deriving tests for checking the functional requirements for software implementations. However, the fault coverage of EFSMbased tests covering appropriate paths, variables, etc., remains rather obscure. Furthermore, these tests are known be incapable of detecting many functional faults frequently occurring in EFSM-based implementations. In this paper, an approach is proposed for deriving complete tests with the help of a proper Java EFSM implementation. Since the software is based on a template, the faults turn directly into EFSM faults. The method proposed here makes it possible to derive test suites that can detect functional faults. In the first step, the EFSM-based test suite derived by a well-known method is checked for completeness with respect to the faults generated by the μJava tool. Then, each undetected fault is easily mapped into an EFSM mutant. In the next step, some FSM abstraction is used to derive a distinguishing sequence for two finite-state machines (if such a sequence exists), which is added to the current test suite. The test derived in this way is complete with respect to the faults generated by μJava. If the corresponding FSM derived by EFSM modeling is too complex or no such FSM can be derived, the resulting test suite can be incomplete. However, the experiments performed by us clearly show that the original test suite extended by distinguishing sequences can detect many functional faults in software implementations when the given EFSM is used as a specification for the system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号