首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure Formation in AlSi7Mg Alloys Directionally Solidified in a Rotating Magnetic Field
Authors:Gerhard Zimmermann  Laszlo Sturz
Affiliation:ACCESS e.V., Intzestrasse 5, 52072 Aachen, Germany
Abstract:To produce high stressed automotive components like engine frames and cylinder heads in foundry industry often AlSi7Mg alloys are used. During mould filling and casting melt flow affects the development of the microstructure, which defines the mechanical properties. In this paper the microstructure formation in AlSi7Mg0.3 and AlSi7Mg0.6 alloys during directional solidification is investigated. To induce a forced melt flow a rotating magnetic field is applied. For that purpose a Bridgman‐type gradient furnace is equipped with a rotary ring magnet. For detailed investigation of the shape of the solid‐liquid interface and the primary dendrite spacing a decanting device is used. As a result, the forced melt flow substantially changes the dendritic solidification microstructure. The rotating magnetic field generates a radial secondary flow in and ahead of the mushy zone, which causes an enrichment of eutectics in the centre of the samples. At lower solidification velocities this locally leads to the transition to mixed columnar‐equiaxed or even to equiaxed growth. In that case the solid‐liquid interfaces of the decanted samples show a significant depression in the centre part. In the out‐of‐centre region columnar growth still exists and the primary dendrite spacing decreases with increasing melt flow.
Keywords:aluminium‐silicon alloy  directional solidification  rotating magnetic field  melt flow  dendrite spacing  mushy zone  microstructure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号