首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Evaluation on Lower Temperature Operation of Blast Furnaces by Charging Carbon Composite Agglomerates
Authors:Mansheng Chu  Jun‐ichiro Yagi  Hiroshi Nogami
Affiliation:1. Institute of Ferrous Metallurgy, Northeastern University, Shenyang, 110004 China;2. Contact:;3. Mansheng CHU, now associate professor at Northeastern;4. University, Box 313, Institute of Ferrous Metallurgy,;5. No.11, Lane 3, Wenhua Road, Heping District, Shenyang,;6. Liaoning, 110004, China.;7. E‐mail:;8. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980‐8577 Japan
Abstract:This paper places emphasis on evaluating ironmaking operation at lower temperature. Blast furnace operation with carbon composite agglomerates (CCB) charging and/or lower operation temperature has been numerically examined using a modified multi‐fluid blast furnace model under constant thermal conditions of the raceway. The numerical calculation shows that a lower in‐furnace temperature level is achieved under the operation with the CCB charging. With CCB charging, the location of the cohesive zone shifts downward and the temperature of the thermal reserve zone decreases. The decrease in heat requirements for solution loss, sinter reduction and silicon transfer reactions compensates the increase in heat demands for CCB reduction and direct reduction, and rather improves the efficiency of blast furnaces. Consequently, the productivity improves, the coke rate shows a notable decrease and the total reducing agent rate also tends to decline compared with conventional operation without CCB charging. Therefore, charging carbon composite agglomerates contributes to the enhancement of blast furnace performance. Furthermore, the model predicts that higher operation efficiency is achieved if the melting and/or tapping temperature could be dropped. The innovative technology of lower temperature ironmaking is expected to be applied in industrial blast furnaces after resolving the problems in engineering and economic evaluations.
Keywords:blast furnace  lower temperature ironmaking  carbon composite agglomerates  multi‐fluid model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号