首页 | 本学科首页   官方微博 | 高级检索  
     


Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria
Authors:Icopini Gary A  Boukhalfa Hakim  Neu Mary P
Affiliation:Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Abstract:Oxidized actinide species are often more mobile than reduced forms. Bioremediation strategies have been developed to exploit this chemistry and stabilize actinides in subsurface environments. We investigated the ability of metal-reducing bacteria Geobacter metallireducens and Shewanella oneidensis to enzymatically reduce Np(V) and Np(V) citrate, as well as the toxicity of Np(V) to these organisms. A toxic effect was observed for both bacteria at concentrations of > or = 4.0 mM Np(V) citrate. Below 2.0 mM Np(V) citrate, no toxic effect was observed and both Fe(III) and Np(V) were reduced. Cell suspensions of S. oneidensis were able to enzymatically reduce unchelated Np(V) to insoluble Np(IV)(s), but cell suspensions of G. metallireducens were unable to reduce Np(V). The addition of citrate enhanced the Np(V) reduction rate by S. oneidensisand enabled Np(V) reduction by G. metallireducens. The reduced form of neptunium remained soluble, presumably as a polycitrate complex. Growth was not observed for either organism when Np(V) or Np(V) citrate was provided as the sole terminal electron acceptor. Our results show that bacteria can enzymatically reduce Np(V) and Np(V) citrate, but that the immobilization of Np(IV) may be dependent on the abundance of complexing ligands.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号