首页 | 本学科首页   官方微博 | 高级检索  
     


The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery
Authors:S Gribaldo  P Cammarano
Affiliation:Department of Biological Sciences, University of Notre Dame, Indiana 46556, USA.
Abstract:The key protein of the signal recognition particle (termed SRP54 for Eucarya and Ffh for Bacteria) and the protein (termed SRalpha for Eucarya and Ftsy for bacteria) involved in the recognition and binding of the ribosome SRP nascent polypeptide complex are the products of an ancient gene duplication that appears to predate the divergence of all extant taxa. The paralogy of the genes encoding the two proteins (both of which are GTP triphosphatases) is argued by obvious sequence similarities between the N-terminal half of SRP54(Ffh) and the C-terminal half of SRalpha(Ftsy). This enables a universal phylogeny based on either protein to be rooted using the second protein as an outgroup. Phylogenetic trees inferred by various methods from an alignment (220 amino acid positions) of the shared SRP54(Ffh) and SRalpha(Ftsy) regions generate two reciprocally rooted universal trees corresponding to the two genes. The root of both trees is firmly positioned between Bacteria and Archaea/Eucarya, thus providing strong support for the notion (Iwabe et al. 1989; Gogarten et al. 1989) that the first bifurcation in the tree of life separated the lineage leading to Bacteria from a common ancestor to Archaea and Eucarya. None of the gene trees inferred from the two paralogues support a paraphyletic Archaea with the crenarchaeota as a sister group to Eucarya.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号