首页 | 本学科首页   官方微博 | 高级检索  
     


Functional Redundancy of FLOWERING LOCUS T 3b in Soybean Flowering Time Regulation
Authors:Qiang Su  Li Chen  Yupeng Cai  Yingying Chen  Shan Yuan  Min Li  Jialing Zhang  Shi Sun  Tianfu Han  Wensheng Hou
Affiliation:1.National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.);2.Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
Abstract:Photoperiodic flowering is an important agronomic trait that determines adaptability and yield in soybean and is strongly influenced by FLOWERING LOCUS T (FT) genes. Due to the presence of multiple FT homologs in the genome, their functions in soybean are not fully understood. Here, we show that GmFT3b exhibits functional redundancy in regulating soybean photoperiodic flowering. Bioinformatic analysis revealed that GmFT3b is a typical floral inducer FT homolog and that the protein is localized to the nucleus. Moreover, GmFT3b expression was induced by photoperiod and circadian rhythm and was more responsive to long-day (LD) conditions. We generated a homozygous ft3b knockout and three GmFT3b-overexpressing soybean lines for evaluation under different photoperiods. There were no significant differences in flowering time between the wild-type, the GmFT3b overexpressors, and the ft3b knockouts under natural long-day, short-day, or LD conditions. Although the downstream flowering-related genes GmFUL1 (a, b), GmAP1d, and GmLFY1 were slightly down-regulated in ft3b plants, the floral inducers GmFT5a and GmFT5b were highly expressed, indicating potential compensation for the loss of GmFT3b. We suggest that GmFT3b acts redundantly in flowering time regulation and may be compensated by other FT homologs in soybean.
Keywords:soybean  GmFT3b  flowering time  photoperiod  functional redundancy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号