首页 | 本学科首页   官方微博 | 高级检索  
     


Variation of fracture toughness of asphalt concrete under low temperatures
Authors:Kwang W Kim  M El Hussein
Affiliation:

*Department of Agricultural Engineering, Kangwon National University, Chun Chon 200-701, South Korea

?Pavement Laboratory, Institute for Research in Construction, National Research Council, Ottawa KlA OR6, Canada

Abstract:This study presents the results of experimental evaluation on fracture toughness of asphalt concrete at various low temperatures (from ?5°C to ?30°C in 5°C steps). An asphalt cement, penetration grade of 85/100 and two aggregates, a granite and a limestone, were used to prepare asphalt concrete beam specimens which were conditioned using two different procedures and tested under three-point bending setup. The first procedure dealt with evaluation of fracture toughness of the asphalt concrete at a control temperature, ?5°C, following conditioning at the specified temperatures. The second procedure dealt with evaluation of fracture toughness at the temperatures at which the samples were conditioned. The results showed that fracture toughness (KIC) for both aggregate mixtures in both procedures changed in a manner that it increased by lowering temperature from ?5°C to ?15°C, and then decreased thereunder. An improved mechanical adhesion due to the strengthened grip of asphalt matrix resulted from differential thermal contraction (DTC) is responsible for increased resistance to the applied loads. The reduction of fracture toughness below ?15°C is explained as the effect of internal damage due to DTC that is a consequence of the large difference in coefficients of thermal contraction between aggregate and asphalt cement. Granite aggregate mixture showed a slightly better resistance to fracture throughout the temperatures. Relatively good linear relations between average values of σf and KIC were found from the regression analysis. Increasing flexural strength resulted in an increased fracture toughness for all mixtures. KIC of granite mix showed more critical to the change of σf.
Keywords:asphalt concrete  fracture  toughness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号