首页 | 本学科首页   官方微博 | 高级检索  
     


Systematic and deterministic graph minor embedding for Cartesian products of graphs
Authors:Arman Zaribafiyan  Dominic J J Marchand  Seyed Saeed Changiz Rezaei
Affiliation:1.1QB Information Technologies (1QBit),Vancouver,Canada
Abstract:The limited connectivity of current and next-generation quantum annealers motivates the need for efficient graph minor embedding methods. These methods allow non-native problems to be adapted to the target annealer’s architecture. The overhead of the widely used heuristic techniques is quickly proving to be a significant bottleneck for solving real-world applications. To alleviate this difficulty, we propose a systematic and deterministic embedding method, exploiting the structures of both the specific problem and the quantum annealer. We focus on the specific case of the Cartesian product of two complete graphs, a regular structure that occurs in many problems. We decompose the embedding problem by first embedding one of the factors of the Cartesian product in a repeatable pattern. The resulting simplified problem comprises the placement and connecting together of these copies to reach a valid solution. Aside from the obvious advantage of a systematic and deterministic approach with respect to speed and efficiency, the embeddings produced are easily scaled for larger processors and show desirable properties for the number of qubits used and the chain length distribution. We conclude by briefly addressing the problem of circumventing inoperable qubits by presenting possible extensions of our method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号