首页 | 本学科首页   官方微博 | 高级检索  
     


Zipper: A compact connectivity data structure for triangle meshes
Authors:Topraj Gurung  Mark Luffel  Peter Lindstrom  Jarek Rossignac
Affiliation:1. Georgia Institute of Technology, United States;2. Lawrence Livermore National Laboratory, United States
Abstract:We propose Zipper, a compact representation of incidence and adjacency for manifold triangle meshes with fixed connectivity. Zipper uses on average only 6 bits per triangle, can be constructed in linear space and time, and supports all standard random-access and mesh traversal operators in constant time. Similarly to the previously proposed LR (Laced Ring) approach, the Zipper construction reorders vertices and triangles along a nearly Hamiltonian cycle called the ring. The 4.4× storage reduction of Zipper over LR results from three contributions. (1) For most triangles, Zipper stores a 2-bit delta (plus three additional bits) rather than a full 32-bit reference. (2) Zipper modifies the ring to reduce the number of exceptional triangles. (3) Zipper encodes the remaining exceptional triangles using 2.5× less storage. In spite of these large savings in storage, we show that Zipper offers comparable performance to LR and other data structures in mesh processing applications. Zipper may also serve as a compact indexed format for rendering meshes, and hence is valuable even in applications that do not require adjacency information.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号