首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element modeling of low speed reaming vibrations with reamer geometry modifications
Authors:S Towfighian  K Behdinan  M Papini  Z Saghir  P Zalzal  J de Beer
Affiliation:(1) Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada, M5B 2K3;(2) Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada, M5B 2K3;(3) Orthopaedic Surgery Division, McMaster University, Hamilton, ON, Canada
Abstract:Reaming is a finishing process used to remove a small amount of material from a predrilled hole. In low speed cutting processes, it is the formation of lobed or multi-cornered holes that is of concern, rather than tool chatter, which occurs at high speed near the natural frequency of the tool. Using a quasi-static model in the characteristic form for the reaming process, a finite element modeling for the low speed reaming process, based on the Euler–Bernoulli beam model, was developed. Cutting and rubbing forces were applied as concentrated and distributed forces on a variable engagement length of the reamer. The variable engagement length is considered to simulate the actual applied forces length as the reamer advances to the workpiece. The time dependant changes in the bending stiffness of the reamer were included in the governing equation of the equilibrium of the reamer, and its stability analysis was performed at different time steps. Using this model, the vibration damping effect of uneven spacing of reamer teeth was investigated. The results demonstrate that uneven spacing of reamer teeth reduces the tool vibration, and therefore leads to a more stable condition. Finally, the optimum configuration of uneven tooth pitch angles for a six-flute reamer, in order to have the highest vibration decay rate during the reaming, was presented.
Keywords:Finite element model  Variable engagement length  Low speed reaming  Low frequency vibration  Hole profile  Irregular tooth spacing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号