首页 | 本学科首页   官方微博 | 高级检索  
     


Fracture toughness of rotationally molded polyethylene and polypropylene
Authors:Abu Saifullah  Ben Thomas  Robert Cripps  Kamran Tabeshfar  Lei Wang  Christopher Muryn
Affiliation:1. Bournemouth University, UK;2. Longitude Consulting Engineers Ltd, Southampton, UK;3. Matrix Polymers, Liverpool, UK;4. School of Chemistry, Manchester University, Manchester, UK
Abstract:In this work, the fracture toughness of rotationally molded polyethylene (PE) and polypropylene (PP) was measured using J integral methods at static loading rates and at room temperature. Two different commercially available rotational molding grades PE and PP were tested in this study which have been used in various rotationally molded products such as small leisure craft, water storage tanks, and so on. Scanning electron microscope (SEM), optical microscope, differential scanning calorimetry (DSC), solid‐state nuclear magnetic resonance (solid‐state NMR), and X‐ray scattering were used to investigate the microstructure, fracture surfaces, and compare toughness properties of these materials. In PE, higher molecular weight and broader molecular weight distribution, larger amorphous and crystal region thicknesses are found to be related to higher toughness values. High molecular weight favors higher number of entanglements that improve fracture energy and broader distribution increases long chain branching of higher molecular weight fractions which creates higher entanglements at the branch sites. Larger amorphous regions promote microvoiding more easily compared to thinner amorphous regions, leading to greater plastic deformation and energy absorption. Higher crystal thickness also contributes to microvoiding in the amorphous region. For PP, greater plastic deformation observed in the fracture surfaces is related to higher fracture toughness values. POLYM. ENG. SCI., 58:63–73, 2018. © 2017 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号