首页 | 本学科首页   官方微博 | 高级检索  
     

非线性抛物型缓坡方程的数值模拟
引用本文:张义丰,李瑞杰,刘金贵,潘锡山. 非线性抛物型缓坡方程的数值模拟[J]. 水动力学研究与进展(A辑), 2010, 25(1). DOI: 10.3969/j.issn.1000-4874.2010-01.007
作者姓名:张义丰  李瑞杰  刘金贵  潘锡山
作者单位:1. 河海大学海岸灾害及防护教育部重点实验室,南京,210098;河海大学环境海洋实验室,南京,210098
2. 河海大学海岸灾害及防护教育部重点实验室,南京,210098
摘    要:参考Lo对MNLS方程中非线性项的处理方法,但不转换到频域求解,同时采用Li修正的非线性弥散关系,对非线性抛物型缓坡方程在复数域进行数值模拟,并分别在Berkhoff椭圆地形及淹没圆形浅滩地形验证了该模型,得到了较好的结果。此模型可以有效地模拟非线性波浪问题。此非线性项的处理方法使得数值计算过程中不需迭代求解,同时减少了边界周期性的限制,易于操作编程,提高了计算效率。

关 键 词:非线性  抛物型缓坡方程  弥散关系  波浪  数值模拟

Numerical simulation of the nonlinear parabolic mild-slope equation
ZHANG Yi-feng,LI Rui-jie,LIU Jin-gui,PAN Xi-shan. Numerical simulation of the nonlinear parabolic mild-slope equation[J]. Chinese Journal of Hydrodynamics, 2010, 25(1). DOI: 10.3969/j.issn.1000-4874.2010-01.007
Authors:ZHANG Yi-feng  LI Rui-jie  LIU Jin-gui  PAN Xi-shan
Abstract:The nonlinear parabolic mild-slope equation with the dispersive relation, which Li had modified, was numerically simulated over the complex field. The numerical method doesn't need transform the function to spectral-domain. This is different from that Lo used to simulate the MNLS equation with the nonlinear items. The authors simulated the surface water wave under both the Berkhoff elliptic topography and the circular shoal topography with the model, and the solution coincide quite well with that have been. The model is effective to simulate nonlinear water wave. This method to solve the nonlinear items is very useful and easy to implement. It can solve the equation without iteration and the limit of the periodic boundary.
Keywords:nonlinear  parabolic mild-slope equation  dispersion relation  water wave  numerical simulation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号