首页 | 本学科首页   官方微博 | 高级检索  
     


Reversible operation performance of microtubular solid oxide cells with a nickelate-based oxygen electrode
Affiliation:1. Instituto de Ciencia de Materiales de Aragón, c/ María de Luna 3, 50018, Zaragoza, Spain;2. Universidad Tecnológica de Panamá, av/ Ricardo J. Alfaro, Campus Víctor Levi Sasso, 0819-07289, Panama;1. Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, China;2. Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA;3. Smart Energy Research Center, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China;1. Laboratoire de physique des matériaux: Structure et Propriétés, Unité de service commun spectromètre de surfaces, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;2. Département Education et Enseignements, Institut Supérieur des Sciences Humaines de Jendouba, Université Jendouba, Avenue de UMA, 8189, Jendouba Nord, Tunisia;3. Laboratoire de Physique des Matériaux Lamellaires et Nanomatériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, 7021, Tunisia;4. Laboratoire de Physique des Matériaux: Structure et Propriétés, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Bizerte, 7021, Tunisia;1. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050, PR China;2. China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, PR China;1. Nanotechnology Research Group, Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810 193, Aveiro, Portugal;2. Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics & Information Technology (MeitY), Govt. of India, Panchawati, Pune, 411 008, India
Abstract:This paper describes the reversible operation of a highly efficient microtubular solid oxide cell (SOC) with a nickelate-based oxygen electrode. The fuel cell was composed of a microtubular support of nickel and yttria stabilized zirconia (Ni-YSZ), an YSZ dense electrolyte, and a double oxygen electrode formed by a first composite layer of praseodymium nickelate (PNO) and gadolinium-doped ceria (CGO) and a second one of PNO. A good performance of the cell was obtained at temperatures up to 800 °C for both fuel cell (SOFC) and electrolysis (SOEC) operation modes, specially promising in electrolysis mode. The current density in SOEC mode at 800 °C is about −980 mA cm−2 at 1.2V with 50% steam. Current density versus voltage curves (j-V) present a linear behavior in the electrolysis mode, with a specific cell area resistance (ASR) of 0.32 Ω cm−2. Durability experiments were carried out switching the voltage from 0.7V to 1.2V. No apparent degradation was observed in fuel cell mode and SOEC mode up to a period of about 100 h. However, after this period especially in electrolysis mode there is an accumulated degradation associated to nickel coarsening, as confirmed by SEM and EIS experiments. Those results confirm that nickelate based oxygen electrodes are excellent candidates for reversible SOCs.
Keywords:SOFC  Fuel cell  Electrolysis  Nickelate  Microtubular
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号