首页 | 本学科首页   官方微博 | 高级检索  
     


Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity
Authors:Schlosrich Janne  Eley Kirstin L  Crowley Patrick J  Bugg Timothy D H
Affiliation:Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
Abstract:
The non-heme-iron(II)-dependent extradiol catechol dioxygenases catalyse the oxidative cleavage of substituted catechols found on bacterial aromatic degradation pathways. The reaction mechanism of the extradiol dioxygenases is believed to proceed through the same proximal hydroperoxide intermediate as the iron(III)-dependent intradiol catechol dioxygenases. Directed evolution was carried out on members of the class III extradiol catechol dioxygenases, by using 1) error-prone polymerase chain reaction, 2) a primer-based cross-over method; the mutant dioxygenases were then screened for their ability to process a range of substituted catechols. Several mutant enzymes were found to show higher activity towards certain substituted catechols, including 4-chlorocatechol, and higher affinity for the iron(II) cofactor. Two mutants isolated from error-prone PCR of Escherichia coli MhpB (mutants R215W and K273R) were found to produce a mixture of extradiol and intradiol cleavage products, as detected by GC-MS and 1H NMR spectroscopy. The residue corresponding to K273 in protocatechuate 4,5-dioxygenase (LigAB), Val244, is located approximately 12 A from the iron(II) centre, but close to the putative dioxygen channel; R215 is found on a sequence loop not present in LigB.
Keywords:aromatic degradation  catechol dioxygenase  cleavage reactions  directed evolution  metalloenzymes
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号