首页 | 本学科首页   官方微博 | 高级检索  
     


Fracture toughness and crack growth rate of ferritic and pearlitic compacted graphite cast irons at 25 ‡C and 150 ‡C
Authors:Lee  Shen-Chih  Chang   Yin-Bean
Affiliation:(1) Department of Materials Engineering, Tatung Institute of Technology, 10451 Taipei, Taiwan, Republic of China;(2) China Ship-Building Corporation, Keelung, Taiwan, Republic of China
Abstract:This research studied the ambient (25 ‡C) and intermediate (150 ‡C) temperatures plane strain fracture toughness(K Ic ) and crack growth rateda/dN vs stress-intensity variation (δK) behaviors of compacted graphite (CG) cast irons in an atmospheric environment. As-cast ferritic irons with different percentages of compacted graphite (vermicularity) were produced by using insufficient amounts of spheroidizer. Irons with pearlitic matrix were obtained by heat treating the as-cast structure. The results of fracture toughness testing indicated that (1) for the same matrix, CG irons with higher vermicularity yielded lowerK Ic values, but their values were still much higher than those of gray (flake graphite) cast iron; (2) for the same vermicularity, CG irons with pearlitic matrix exhibited higher fracture toughness values than those of ferritic matrix; (3) at intermediate temperature (150 ‡C), the influence of vermicularity and matrix on fracture toughness is the same as at ambient temperature, except that theK Ic values were all a bit lower (1 to 8 pet). From crack growth ratevs stress-intensity variation experiments, the Paris equationda/dN = C(δK) n was derived, where a smaller value of indicates better crack growth resistance of materials. Compacted graphite cast irons with pearlitic matrix and/or greater vermicularity rendered highern values and, thus, inferior crack growth resistance. At elevated temperature, then values were all lower, indicating that the crack growth resistance was improved. Formely a Graduate Student, Department of Materials Engineering, Tatung Institute of Technology.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号