首页 | 本学科首页   官方微博 | 高级检索  
     

自适应序列生成的建筑能耗预测
引用本文:王悦,陈建平,傅启明,吴宏杰,陆悠. 自适应序列生成的建筑能耗预测[J]. 计算机系统应用, 2021, 30(11): 155-163. DOI: 10.15888/j.cnki.csa.008151
作者姓名:王悦  陈建平  傅启明  吴宏杰  陆悠
作者单位:苏州科技大学电子与信息工程学院,苏州215009;苏州科技大学江苏省建筑智慧节能重点实验室,苏州215009;苏州科技大学苏州市移动网络技术与应用重点实验室,苏州215009;珠海米枣智能科技有限公司,珠海519031;苏州科技大学江苏省建筑智慧节能重点实验室,苏州215009;苏州科技大学苏州市移动网络技术与应用重点实验室,苏州215009;苏州科技大学电子与信息工程学院,苏州215009;苏州科技大学江苏省建筑智慧节能重点实验室,苏州215009;苏州科技大学苏州市移动网络技术与应用重点实验室,苏州215009
基金项目:国家自然科学基金(62072324, 61876217, 61876121, 61772357); 江苏省重点研发计划(BE2017663)
摘    要:提出一种基于强化学习的生成对抗网络(Reinforcement learning-based Generative Adversarial Networks,Re-GAN)能耗预测方法.该算法将强化学习与生成对抗网络相结合,将GAN(Generative Adversarial Nets)中的生成器以及判别器分别构建为强化学习中Agent(生成器)以及奖赏函数.在训练过程中,将当前的真实能耗序列作为Agent的输入状态,构建一组固定长度的生成序列,结合判别器及蒙特卡洛搜索方法进一步构建当前序列的奖赏函数,并以此作为真实样本序列后续第一个能耗值的奖赏.在此基础之上,构建关于奖赏的目标函数,并求解最优参数.最后使用所提算法对唐宁街综合大楼公开的建筑能耗数据进行预测试验,实验结果表明,所提算法比多层感知机、门控循环神经网络和卷积神经网络具有更高的预测精度.

关 键 词:生成对抗网络  强化学习  建筑能耗预测  策略梯度  人工智能
收稿时间:2021-01-25
修稿时间:2021-02-24

Prediction of Building Energy Consumption Generated by Adaptive Sequence
WANG Yue,CHEN Jian-Ping,FU Qi-Ming,WU Hong-Jie,LU You. Prediction of Building Energy Consumption Generated by Adaptive Sequence[J]. Computer Systems& Applications, 2021, 30(11): 155-163. DOI: 10.15888/j.cnki.csa.008151
Authors:WANG Yue  CHEN Jian-Ping  FU Qi-Ming  WU Hong-Jie  LU You
Affiliation:College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China;Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou 215009, China;Zhuhai Mizao Intelligent Technology Co. Ltd., Zhuhai 519031, China
Abstract:This study proposes an energy consumption prediction method based on Reinforcement learning and Generative Adversarial Networks (Re-GANs). The algorithm constructs the generator and discriminator in Generative?Adversarial?Nets (GANs) into the Agent and reward function in reinforcement learning respectively. In the training process, the current real energy consumption sequence is taken as the input state of the Agent (generator), and a set of generation sequences with a fixed length is constructed. Combined with the discriminator and Monte-Carlo search method, the reward function of the current sequence is further constructed as a reward for the first subsequent energy consumption value of the real sample sequence. On this basis, the objective function of reward is constructed, and the optimal parameters are solved. Finally, the proposed algorithm is used to predict the public building energy consumption data of the Downing Street complex. The experimental results show that the proposed algorithm has higher prediction accuracy than the multi-layer perception machine, gated loop neural network, and convolution neural network.
Keywords:Generative Adversarial Networks (GANs)  reinforcement learning  building energy consumption prediction  strategy gradient  artificial intelligence
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号