首页 | 本学科首页   官方微博 | 高级检索  
     


Enzyme immobilization on polyglycidylmethacrylate graft-copolymer of different polysaccharides
Authors:L. D'Angiuro  P. Cremonesi  R. Cantafi  G. Mazzola  G. Vecchio
Abstract:Comparative results obtained in preparing and characterizing samples of enzymes immobilized by reaction with polyglycidylmethacrylate (PGMA) copolymers with different polysaccharide matrices are reported. Sepharose copolymers having between 25 and 50% synthetic polymer were used to find the best immobilization conditions of horseradish peroxidase (HRP) and glucose-oxidase (GOD) (pH, time, temperature, enzyme cncentration). Activity, enzyme loading and coupling efficiency of immobilized HRP and GOD are greatly dependent on the type of matrix while the polymer content is less important. Coupling efficiencies between 0.8 and 1.5% have been obtained for HRP samples, whereas for GOD samples coupling efficiencies three times greater were obtained. HRP and GOD immobilized samples show Km′ values greater than those of corresponding free enzymes and this indicates diffusion limitation phenomena. Storage, thermal and operational stability were also studied. In general the storage stability could be considered satisfactory (50% residual activity after 360 days). Sepharose and starch HRP-copolymers had an improved thermal stability compared with that of free enzyme. Residual activity found in continuous operation tests carried out on HRP-immobilized samples turned out to be dependent on support. HRP-PGMA-Cellulose sample gave the best results (50% residual activity after 16 days). PGMA-graft-copolymers have also been used to immobilize other enzymes such as α-amylase, α-chymotrypsin and cellulase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号