首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和BP神经网络的视觉诱发电位识别
引用本文:肖贵贤,陈亚光,官金安,肖丹丹. 基于小波变换和BP神经网络的视觉诱发电位识别[J]. 现代科学仪器, 2008, 0(6)
作者姓名:肖贵贤  陈亚光  官金安  肖丹丹
作者单位:1. 中南民族大学电子信息工程学院,湖北,430074;湖北黄石理工学院,湖北,435003
2. 中南民族大学电子信息工程学院,湖北,430074
基金项目:国家自然科学基金  
摘    要:结合小波变换和误差逆传播(Error Back Propagation,BP)神经网络对视觉诱发脑电信号(visual evoked potential,VEP)进行分类而产生脑机接口控制信号.利用一维离散小波变换提取强噪声背景下的低频微弱脑电信号,获取特征向量输入BP神经网络进行事件相关电位模式识别.实验表明,小渡变换特征向量提取方法能有效地实现信号的去噪、降维和特征提取,BP神经网络能比较准确地从VEP中识别出事件相关电位,进行10次测试的平均识别正确率为99.375%,有利于产生脑机接口控制信号.

关 键 词:视觉诱发电位(VEP)  脑机接口  小波变换  BP神经网络

Recognition of Visual Evoked Potential Based on Wavelet and BP Neural Network
Xiao Guixian,Chen Yaguang,Guan Jinan,Xiao Dandan. Recognition of Visual Evoked Potential Based on Wavelet and BP Neural Network[J]. Modern Scientific Instruments, 2008, 0(6)
Authors:Xiao Guixian  Chen Yaguang  Guan Jinan  Xiao Dandan
Affiliation:Xiao Guixian~(1,2) Chen Yaguang~1 Guan Jin'an~1 Xiao D,an~1 (1 School of Electronic , Information Engineering,South-Central University for Nationalities,Hubei 430074,China) (2 Huangshi Institute of Technology,Hubei 435003,China)
Abstract:The classification of visual evoked potential(VEP) with wavelet transform and BP neural network was used to obtain brain-computer interface (BCI) control signal.One-dimensional discrete wavelet transform (DWT) method was used to extract the low-frequency weak VEP signal from strong background noise.The extracted feature vectors were input to the BP neural network to achieve the recognition of event related potential(ERP).Experiments showed that the feature extraction in wavelet transformation could effectiv...
Keywords:visual evoked potential  brain-computer interface  wavelet transform  BP neural network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号