首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of Bernoulli beams with 3D stochastic heterogeneity
Authors:Eli Altus  
Affiliation:

Faculty of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel

Abstract:The behavior of stochastically heterogeneous beams, composed of isotropic sub-elements of randomly distributed stiffness is studied. Cross sectional as well as longitudinal heterogeneity are included. Average displacements, reaction forces and their statistical variance are found analytically by a functional perturbation method. Ratio of sub-element to beam characteristic size is not negligible and the use of an equivalent homogeneous structure with the classical effective material properties is not sufficient. The major aim is to study the relation between various microstructure properties (grain size, shape, modulus, statistical correlation lengths etc.) and the overall behavior of linear elastic Bernoulli beams. For the statically determinate case, only cross sectional 2D microstructure statistics is found to affect the elastic response, so that an equal average displacement can be achieved by an equivalent, non-isotropic homogeneous beam. For the indeterminate case, the average values of macro properties are affected by the 3D morphological features. Therefore, the proper equivalent homogeneous beam has to include non-local elastic properties. A simple reciprocal relation, connecting two separate loading systems is found, relating their external forces and displacement statistical variances. Morphological parameters, like two point probability moments, used in the final results are derived analytically, and their physical interpretations are discussed.
Keywords:Microstructures  Beams  Heterogeneity  Anisotropy  Random morphology  Probability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号