首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Simulation of ZnO-Based Terahertz Quantum Cascade Lasers
Authors:Enrico Bellotti  Roberto Paiella
Affiliation:(1) Department of Physics and Division of Energy Systems Research, Ajou University, Suwon, 443-749, Korea;;
Abstract:In this work, a particle-based Monte Carlo model is used to quantify the potential of terahertz sources based on the ZnO-based material system relative to existing devices based on GaAs/AlGaAs quantum wells. Specifically, two otherwise identical quantum cascade structures based on ZnO/MgZnO and GaAs/AlGaAs quantum wells are designed, and their non- equilibrium carrier distributions are then computed as a function of temperature. The simulation results show that, because of their larger optical phonon energy, ZnO/MgZnO quantum cascade laser structures exhibit weaker temperature dependence of the population inversion than in the case of similar structures made of GaAs/AlGaAs. In particular, as the temperature is increased from 10 K to 300 K, population inversion is found to decrease by a factor of 4.48 and 1.50 for the AlGaAs and MgZnO structure, respectively. Based on these results, the MgZnO devices are then predicted to be, in principle, capable of laser action without cryogenic cooling.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号