首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of nitrate on the performance of single chamber air cathode microbial fuel cells
Authors:Sukkasem Chontisa  Xu Shoutao  Park Sunhwa  Boonsawang Piyarat  Liu Hong
Affiliation:Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA.
Abstract:The effect of nitrate on the performance of a single chamber air cathode MFC system and the denitrification activity in the system were investigated. The maximum voltage output was not affected by 8.0mM nitrate in the medium solution at higher external resistance (270-1000Omega), but affected at lower resistance (150Omega) possibly due to the low organic carbon availability. The Coulombic efficiency was greatly affected by the nitrate concentration possibly due to the competition between the electricity generation and denitrification processes. Over 84-90% of nitrate (0.8-8.0mM) was removed from the single chamber MFCs in less than 8h in the first batch. After 4-month operation, over 85% of nitrate (8.0mM) was removed in 1h after the MFC was continuously fed with a medium solution containing nitrate. Only a small amount of nitrite (<0.01mM) was detected during the denitrification process. The similar denitrification activity observed at different external resistances (1000 and 270Omega) and open circuit mode indicates that the denitrification was not significantly affected by the electricity generation process. No electricity was generated when the MFC fed with 8.0mM nitrate was moved to a glove box (no oxygen), indicating that the bacteria on the cathode did not involve in accepting electrons from the circuit to reduce the nitrate. Denaturing Gradient Gel Electrophoresis (DGGE) profiles demonstrate a similar bacterial community composition on the electrodes and in the solution but with different dominant species.
Keywords:Microbial fuel cell   Denitrification   Single chamber   Air cathode   Nitrate   Wastewater treatment
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号